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Abstract

According to the Church-Turing Thesis, effectively calculable functions are the functions com-
putable by a Turing machine. Models that compute these functions are called Turing-complete.
For example, we know that usual imperative languages (like C, Ada or Python) are Turing
complete (up to unbounded memory).

Algorithmic completeness is a stronger notion than Turing-completeness. It focuses not
only on the input-output behavior but also on the step-by-step behavior of the computation.
Moreover, the issue is not limited to the set of partial recursive functions, and applies to any
desired set of functions. Indeed, a model could compute all the desired functions, but some
algorithms (ways to compute these functions) could be missing (see [11] for an example related
to primitive recursive algorithms).

This paper is devoted to prove that usual imperative languages are not only Turing-complete
but also algorithmically complete, using the axiomatic definition of the Gurevich’s Thesis and a
fair bisimulation between his Abstract State Machines and a version of Jones’ While programs.
No special knowledge is assumed, because all relevant material will be explained from scratch.

Keywords 1. Theory of Algorithms, Models of Computation, Completeness.

Introduction

Algorithms have been studied for ages, even before the famous Euclidean algorithm1. The study
of algorithms can be seen as a field between computability theory and computer programming,
but unlike functions and programs there is still no consensus for a formal definition of algo-
rithms. Most of the ancient algorithms were sequential algorithms, but nowadays there exists
also parallel, distributed, real-time, bio-inspired or quantum algorithms, which involve many
fields in science.

Because the notion of algorithm is currently a work in progress in the scientific community I
thought convenient to explain my approach with a dialog between the Author and Quisani, an
inquisitive former student responding to Gurevich in [4]. Knuth himself wrote on the pedagogical
role of the dialog in [21].

Q: I read2 that, according to the Church Thesis, Turing machines can compute every function
calculable by a human with pencil and paper. Of course, usual imperative languages like C, Ada
or Python can implement a Turing Machine, so they must be algorithmically complete. What
is new in your approach?

A: Indeed, like recursive functions or the lambda-calculus, imperative languages compute
the same set of functions as Turing machines. These models of computation are called Turing-
complete. But Turing-completeness is not algorithmic completeness.

Q: Can you explain the difference?

1One example is the Babylonian method for approximating square roots.
2For example, in [26], where Robert I. Soare insists on the intentional difference between recursive functions and
computable functions.
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A. Sure. The notion of Turing-completeness describes an input-output behavior. Up to
simulation, a model is said to be Turing-complete if for a given initial state it can compute
the same final state than a Turing machine. This is only functional completeness. Algorithmic
completeness is a notion describing a step-by-step behavior. Up to simulation, a model is said
algorithmically complete if for a given initial state it can compute the same execution as a given
algorithm. From an algorithmic point of view, intermediate states matter.

Q: Do you mean that different executions have different costs in space and time? We already
know how to distinguish some classes of complexity. For example, Neil D. Jones characterized
LogSpace or Ptime with the imperative While language in [20].

A: Yes, the complexity is one, and probably the most common, way to distinguish algorithms.
For example, the palindrome recognition can be done in O(n) steps with a two-tape Turing
machine, but requires at least (see [3]) O(n2/log(n)) steps with a one-tape Turing machine.
These models are not algorithmically equivalent. But we know that a one-tape Turing machine
can simulate the results of a two-tape Turing machine, so they are functionally equivalent.

Q: So, if I have understood correctly... A one-tape Turing machine can simulate the results
of a two-tape Turing machine. But some algorithms requiring O(n) steps in the two-tape Turing
machines are missing in the one-tape Turing machines. So the two-tape Turing machines are
strictly “algorithmically” stronger than the one-tape Turing machines. And the one-tape Turing
machines cannot be algorithmically complete... but I guess this depends on the set of algorithms
you consider.

A: You are right. For example, we have interesting results about primitive recursive al-
gorithms. Loïc Colson proved in [11] that the minimum function cannot be computed in
O(min(m,n)) steps with primitive recursion. So the following algorithm is missing:

Inputs m,n
Initialization x := 0
Do x := x+ 1 Until x = m or x = n
Output x

Yiannis N. Moschovakis proved a similar result in [25] about LogT ime algorithms for the
greatest common divisor. For the same reasons an equivalent (see [23]) imperative language like
the Loop of Albert Meyer and Dennis Ritchie cannot be complete for the primitive recursive
algorithms. But Philippe Andary, Bruno Patrou and Pierre Valarcher proved in [1] that adding
an exit command is sufficient to obtain all the primitive recursive algorithms on unary integers.

Q: Why do you need all the algorithms?
A: To be sure we have the best one3, whatever can be our criteria.
Q: Ok... but I realize that I am not really sure of what you call “algorithms”... I mean,

without a clear formalization of what an algorithm is, you simply cannot determine if a model
of computation is algorithmically complete or not.

A: Nowadays, unlike functions or programs, there is no clear consensus about the formaliza-
tion of algorithms, even if we consider only sequential algorithms. To my knowledge, there is
three main approaches:
3Only if a “best” algorithm can be found for the desired criteria. For example, Blum proved in [8] that there exists
a total recursive function f such that for every machine Mi computing f there exists a machine Mj computing f
exponentially faster for almost inputs.
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• Noson S. Yanofsky, in [28], considered algorithms as an equivalence class of programs on
functions4. He was criticized by Yuri Gurevich in [7], because as Yanofsky said “whether
or not two programs are the same... is really a subjective decision”.

• Yuri Gurevich formalized sequential algorithms as Abstract State Machines5 by if cond then actions
commands like in [2]. This approach was criticized by Yiannis Moschovakis because algo-
rithms should not be limited to machine systems.

• Yiannis Moschovakis defined in [24] algorithms as a system of fixed-point equations called
recursors. Gurevich responded in [5] that these definitions are specifications and not
algorithms, and that Moschovakis’ non-mechanical algorithms could be implemented by
more general machines.

Q: So, for the moment there is no consensus like the one between Church, Gödel, Kleene and
Turing about the computable functions after the publication of Turing’s article [27]. So, which
one have you chosen ?

A: I was convinced by the axiomatization of the Gurevich Thesis, based on the three pos-
tulates of sequential time, abstract states and bounded exploration. He proved in [17] that
his axiomatic approach is identical to his Abstract State Machines, so the ASMs are a model
of reference to determine if another model of computation is algorithmically complete or not.
Moreover, the ASMs are closer to an imperative framework than the recursors of Moschovakis,
so they seemed more appropriate for my purpose.

Q: So, in a way, according to you, ASMs have the same role in the Gurevich Thesis as Turing
machines had in the Church Thesis. I remember what you said about intermediate states... so
I suppose that for you a model of computation is algorithmically complete if it simulates the
same executions as the ASMs?

A: Exactly. The aim of this paper is the following theorem:

Theorem 1. The imperative programs and the abstract state machines can fairly simulate each
other.

Q: What do you mean by a “fair simulation”?
A: The simulation uses temporary variables and a constant temporal dilation, like in [13]

where Marie Ferbus-Zanda and Serge Grigorieff proved the algorithmic completeness of the
lambda-calculus. Philippe Andary, Bruno Patrou and Pierre Valarcher used the same method
in [1] to obtain all the arithmetical primitive recursive algorithms.

Q: But imperative programming languages are very different, how can you prove a theorem
for every of them?

A: They have different syntaxes but common features, in particular for structured program-
ming: sequences of assignment statements, conditional branching statements, looping statements
in block structures. To implement these common features I will introduce my own version of the
Jones’ While language, which is the core of every “real” imperative programming languages.
4And worked in [29] on an interesting Galois theory of algorithms.
5Gurevich implemented ASMs via AsmL (see [10] for a comparaison).
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Q: Jones’ While language contains only updates, if and while commands, and uses only
lists as data structure. What is the difference with your version ?

A: I studied algorithmic completeness up to data structures: my While language will con-
tain the same data structures as the simulated abstract state machine, to respect the oracular
nature6 of algorithms and free us from particular technological implementations. My result is
on control structures: sequences, updates, if and while commands are sufficient to simulate
every sequential algorithm. So every usual imperative programming language is algorithmically
complete, at least for algorithms using data structures available in the considered language.

1. Sequential Algorithms (Algo)
In [17] Gurevich introduced an axiomatic presentation of the sequential algorithms, giving three
postulates:

Gurevich’s Thesis 1. Every sequential algorithm satisfies:

• Postulate 1: Sequential Time

• Postulate 2: Abstract States

• Postulate 3: Bounded Exploration

So let Algo be the set of the objects satisfying the following three postulates.

Three Postulates

Postulate 1. (Sequential Time)
A sequential algorithm A is given by:

• a set of states S(A)

• a set of initial states I(A) ⊆ S(A)

• a transition function τA : S(A)→ S(A)

Remark 1. Two sequential algorithms A and B are the same (see [7]) if:

• S(A) = S(B)

• I(A) = I(B)

• τA = τB

In the following, it will be denoted by A = B.
6By “oracular nature” we mean that every algorithm is written using a set of static functions considered as oracles.
For example: moving the head, reading the scanned symbol and changing the state are static operations given
for free in Turing machines.



6 Y. Marquer /Algo. completeness of Imp. languages

An execution of A is a sequence of states ~X = X0, X1, X2, ... such that:

• X0 is an initial state

• for every i ∈ N: Xi+1 = τA(Xi)

A state Xm of an execution is said final if τA(Xm) = Xm, indeed in that case the execution
is X0, X1, X2, ... Xm, Xm, ... so the execution is considered stopped at the state Xm.

An execution is said terminal if it contains a final state. Of course, if an execution is
terminal then the final state is unique.

Let time(A,X) = min{i ∈ N ; τ iA(X) = τ i+1
A (X)}, where f i is the iteration of f defined by

f0 = id and f i+1 = f(f i).

Remark 2. Two algorithms A and B have the same set of executions if:

• I(A) = I(B)

• τA = τB

In this case S(A) 6= S(B) can occurs only for the unreachable states. The condition S(A) =
S(B) can be seen as unnecessary, but it does not matter in the following.

For the postulate 2, the memory of the execution will be formalized by a (first-order) struc-
ture X given by:

• A language LX

• A universe (or base set) UX

• For every k-ary symbol s ∈ LX , an interpretation sX : UkX → UX

These notations are from [12].
To have a uniform presentation Gurevich considers constant symbols of the language as 0-ary

function symbols, and relation symbols R as their indicator function χR (R(~a) iff χR(~a) = true),
so every symbol in LX is a function. Partial functions can be implemented with a special value
undef .

In the following, the interpretation sX of the symbol s in the structure X represents the
value in the register s for the state X. The second postulate is a claim assuming that every data
structure can be formalized as a first-order structure 7. Because the states are independent from
their implementation (for example the name of the objects), isomorphic states are considered
equivalent:

Postulate 2. (Abstract States)
7I will discuss in the conclusion of a constructive Postulate 2 for usual data structures (integers, words, lists,
arrays and graphs) but this is not the point of this article.



Y. Marquer /Algo. completeness of Imp. languages 7

• The states of an algorithm A are first-order structures.
The states of A have the same (finite) language LA and the same universe UA8.

• S(A) and I(A) are closed under isomorphisms.
Every isomorphism between X and Y is an isomorphism between τA(X) and τA(Y ).

The symbols of LA are distinguished between the dynamic symbols whose interpretation
can change during an execution, and the static symbols. So, the interpretation of the static
symbols is fixed by the initial state.

Moreover I will distinguish the constructors whose interpretation is uniform for every initial
state, and the parameters. The symbols depending on the initial state are the dynamic symbols
and the parameters: they are the inputs. The constructors and their interpretation are the
representation of data structures.

The logical variables will not be used in this paper: every term will be closed and every
formula will be closed and without quantifier. In this framework the variables are the 0-ary
dynamic function symbols.

For a sequential algorithm A, let:

• X be a state of A

• f ∈ LA be a dynamic k-ary function symbol

• a1, ... ak, b ∈ UA

(f, a1, ... ak) is a location of X and (f, a1, ... ak, b) is an update on X at the location
(f, a1, ... ak).

If u is an update then X + u is a new structure of language LA and universe UA such that
the interpretation of a function symbol f ∈ LA is:

• fX+u(~a) = b if u = (f,~a, b)

• fX+u(~a) = f
X(~a) else

If fX(~a) = b then the update (f,~a, b) is said trivial in X, because nothing has changed: if
(f,~a, b) is trivial in X then X + (f,~a, b) = X.

If ∆ is a set of updates then ∆ is said consistent if it does not contain two distinct updates
with the same location. Indeed, if (f,~a, b), (f,~a, b′) ∈ ∆ and b 6= b′ then this set tries to update
f(~a) with two distinct values. In that case, the entire set of updates clashes and nothing is done:

• fX+∆(~a) = b if (f,~a, b) ∈ ∆ and ∆ is consistent

• fX+∆(~a) = f
X(~a) else

8In fact in [17] only the language is the same for the states, and Gurevich only assumes that τA does not change
the universe of a state. But the difference between two initial states is the interpretation of the inputs, so I assume
that the universe is the union of every possible structure for the algorithm, to get a simpler presentation.



8 Y. Marquer /Algo. completeness of Imp. languages

If X and Y are two states of the same algorithm A then there exists a unique consistent set
∆ of non trivial updates such that Y = X + ∆. This ∆ is the difference between the two sets
and is denoted Y − X. Indeed, because X and Y have the same language and the same base
set they have the same locations, so let ∆ be the set {(f,~a, fY (~a)) ; fY (~a) 6= f

X(~a)}.
Let ∆(A,X) = τA(X) −X be the set of the updates made by a sequential algorithm A on

the state X.
The first and the second postulates are not sufficient: only local and bounded changes and

explorations are reasonable for each step of a sequential algorithm9. So only a bounded number
of terms must be read or updated during a step of the execution:

Postulate 3. (Bounded Exploration)
For each algorithm A there is a finite set T of terms such that if two states X and Y coincide

over Sub(T ) then ∆(A,X) = ∆(A, Y ), where:

• X and Y coincide over T means that the terms of T have the same interpretation in X
and Y

• Sub(T ) is the set of the subterms of T

This T is called the exploration witness of A.
Gurevich proved in [17] that if (f, a1, ... ak, b) ∈ ∆(A,X) then a1, ... ak, b are interpretations

in X of terms in sub(T ). So because T is finite there exists a bounded number of a1, ... ak, b such
that (f, a1, ... ak, b) ∈ ∆(A,X). Moreover because LA is finite there exists a bounded number
of dynamic symbols f . So ∆(A,X) has a bounded number of elements, and for each step of the
algorithm only a bounded amount of work is done.

Fair Simulation

A model of computation can be defined as a set of programs given with their operational
semantics. In our paper we only study the sequential algorithms, which have a step-by-step
execution determined by their transition function. So this operational semantics can be defined
by a set of transition rules, for example:

Example 1.1. (The Lambda-Calculus 10)
(Syntax of the Programs) t := x | λx.t | (t1)t2
(The β-reduction) (λx.t1)t2 →β t1[t2/x]

To be deterministic the strategy of the transition system must be specified, for example the
call-by-name strategy defined by context:

(Call-by-Name Context) Cn{.} := . | Cn{.}t
(Transition Rule) Cn{(λx.t1)t2} →n Cn{t1[t2/x]}

This rule can be implemented in a machine:
9I give an example p.9 with the parallel lambda-calculus.
10The notations and the machine are from Krivine’s [22].
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(Operational semantics) t1t2 ? π �0 t1 ? t2, π

λx.t1 ? t2, π �1 t1[t2/x] ? π
In this machine π is a stack of terms. The symbol ? is a separator between the current

program and the current state of the memory. �i represents i steps of calculus, so here only
substitutions have a cost, not explorations inside a term, like for the contextual transition rule.
Programs in the machine are closed terms, so final states have the form λx.t ?∅.

Notice that if the substitution is given as elementary operation this model satisfies postulate
3, because only one term is pushed or popped per step. But the lambda-calculus with parallel
reductions does not, for example with the term t = λx.(x)x(x)x applied to itself: (t)t →p

(t)t(t)t →p (t)t(t)t(t)t(t)t →p (t)t(t)t(t)t(t)t(t)t(t)t(t)t(t)t →p .... Indeed, at the step i exactly
2i−1 β-reduction are done, which is unbounded.

Sometimes the identity between two models of computation can be proven. For example,
Serge Grigorieff and Pierre Valarcher proved in [15] that formal classes of the EMAs (a variant of
the Gurevich’s ASMs) not only simulate step by step but can be identified to Turing Machines,
Random Access Machines or other sequential models of computation. But generally only a
simulation can be proven between two models of computation.

In this framework, a computation model M1 can simulate an other computation model M2
if for every program P2 of M2 there exists a program P1 of M1 producing in a “reasonable way”
the “same” executions of P2. What can be used in a fair simulation is detailed in the following
two examples:

Example 1.2. (Temporary Variables)
In this example a programmer tries to simulate a repeat n {s} command in an impera-

tive programming language containing while commands. The well-known solution is to use a
temporary variable i in the new program:
{i := 0; while i < n {s; i := i+ 1; }; }11

This simulation is very natural, but a fresh variable i is necessary.
The language L1 of the simulating program must be bigger than the language L2 of the

simulated program. But new function symbols could be too powerful, for example a unary
symbol env containing every value of the environment.

To get a fair simulation, I assume that L1 \ L2 is a set containing only a bounded number
of variables. The initial values of these fresh variables could be a problem if they depend on
the inputs. So in this paper we will use an initialization depending12 only of the constructors13.
Because this initialization will be independent (up to isomorphism) from the initial states, we
will call it a uniform initialization.

So, structures of the simulating program P1 will be defined with the language L1, and the
structures of the simulating program P2 will be defined with the language L2 ⊆ L1.

11This syntax will be defined p.15.
12The values of the fresh variables in the initial states can also be irrelevant, for example p.25 in the program PΠ
the variables ~v are explicitly updated with the value of the terms ~t before being read.
13For example p.22 in the program ΠP the boolean variable bP is initialized with true and the other with false.
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Notation 1. X|L2 from [12] is the restriction of the L1-structure X to the language L2,
defined by:

• The language is L2.

• The universe is the same.

• For every s ∈ L2: sX|L2 = sX

This notation will be extended to set of updates: ∆|L =def {(f,~a, b) ∈ ∆ ; f ∈ L}. Notice
that (X + ∆)|L = X|L + ∆|L.

Example 1.3. (Temporal Dilation)
At each step of a Turing machine, depending on the current state and the symbol in the

current cell:

• the state of the machine is updated

• the machine writes a new symbol in the cell

• the head of the machine can move left or right

The notion of elementary action is arbitrary. In this case they can be seen as distinct actions
that require three steps of calculus (model M1) or as one single multi-action that requires only
one step of calculus (model M2). So, one action in M2 requires three actions of M1.

Let ~X be an execution X0, X1, X2, X3, X4, X5, X6, ... ofM1, and let ~Y be the black execution:
for every i Yi = X3×i. ~Y is an execution of M2.

Imagine that M1 and M2 are implemented on real machines such that M1 is three times
faster than M2. In that case if an external observer starts the two machines at the same time
and looks at their states at every step of M2 then the two machines cannot be distinguished.

The time unit is arbitrary.

In the following a (constant) temporal dilation d will be allowed: the simulation is said step-
by-step, and strictly step-by-step if d = 1. Contrary to the previous example this constant may
depend on the simulated program.

But sadly this temporal dilation is not sufficient to ensure the termination of the simula-
tion. Indeed, the simulated execution Y0, ... Ym, Ym, ... could have finished, but the simulating
simulation may have not:

X0, ... Xmd, Xmd+1, ... Xmd+(d−1), Xmd, Xmd+1, ....
So an ending condition like time(A,X) = d× time(B,X) + e is necessary. In the following

I consider only models of computation with idle moves14, so with d′ = max(d, e) it is possible
to end the simulating program at the same time (up to temporal dilation) than the simulated
program.
14If the temporal dilation is ≤ d instead of = d then the idle moves (skip commands) are not necessary in this
paper. This weakened simulation respects also the time complexity.
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Definition 1.4. (Fair Simulation)
Let M1,M2 be two computation models.
M1 simulates M2 if for every program P2 of M2 there exists a program P1 of M1 such that:

1. L(P1) ⊇ L(P2), and L(P1) \ L(P2) is a finite set of variables
(with a uniform initialization)

There exists d ∈ N? and e ∈ N (depending only of P2) such that
for every execution ~Y of P2 there exists an execution ~X of P1 such that:

2. for every i ∈ N: Xd×i|L(P2) = Yi

3. time(P1, X0) = d× time(P2, Y0) + e

If M1 simulates M2 and M2 simulates M1 then these models of computation are said algo-
rithmically equivalent, denoted by M1 'M2.

Remark 3. If the simulated execution requires n steps of calculus then the simulating execution
requires O(n) steps, so the simulation respects the time complexity. Moreover Yi = Xd×i|L(P2)
implies for i = 0 that the initial states are the same, up to temporary variables.

2. Models of Computation
In this section the Gurevich’s Abstract State Machines are defined, and we use his theorem
Algo = ASM to get a constructive (from an operational point of view) occurrence of the sequential
algorithms. So a model of computationM will be said algorithmically complete if M ' ASM.

For example, in [13], Marie Ferbus-Zanda and Serge Grigorieff proved that the lambda-
calculus is algorithmically complete up to the oracular nature of the algorithms: constant sym-
bols must be added in the lambda-calculus to get the same language than the ASMs.

I will use the same method in this paper. Taking Jones’ While language as core for im-
perative languages, I will prove in the next section the algorithmic completeness of While via
a bisimulation between ASM and While, using the same data structures in these two models of
computation.

Abstract State Machines (ASM)

Because the constructors have a uniform interpretation, for a simpler presentation in the fol-
lowing I will not distinguish their syntax from their semantics. The Gurevich’s Abstract State
Machines (ASM) require only:

• The equality =.

• The booleans: the constants true and false, the unary operation ¬ and the binary oper-
ations ∧, ∨, ⇒ and ⇔15.

15All these symbols are not necessary because they can be simulated. And indeed only ¬ and ∧ are necessary for
formulas page 13.
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Definition 2.1. (ASM programs)
Π =defft1...tk := t0

| if F then Π1 else Π2 endif
| par Π1‖...‖Πn endpar

where:

• f is a dynamic k-ary function symbol and t0, t1, ... tk are closed terms

• F is a formula

Notation 2. For n = 0 a par command is an empty program, so let skip be the command
par endpar.

If the else part of an if is a skip we will write only if F then Π endif.
Read(Π) is defined by induction on Π:

• Read(ft1...tk := t0) = {t1, ... tk, t0}

• Read(if F then Π1 else Π2 endif) = {F} ∪Read(Π1) ∪Read(Π2)

• Read(par Π1‖...‖Πn endpar) = Read(Π1) ∪ ... ∪Read(Πn)

Upd(Π) is defined by induction on Π:

• Upd(ft1...tk := t0) = {ft1...tk}

• Upd(if F then Π1 else Π2 endif) = Upd(Π1) ∪ Upd(Π2)

• Upd(par Π1‖...‖Πn endpar) = Upd(Π1) ∪ ... ∪ Upd(Πn)

An ASM program Π induces a transition function τΠ(X) = X + ∆(Π, X), where the set of
updates ∆(Π, X) is defined by induction:

Definition 2.2. (Operational Semantics of ASMs)

• ∆(ft1...tk := t0, X) = {(f, t1X , ... tkX , t0X)}

• ∆(if F then Π1 else Π2 endif, X) = ∆(Πi, X)

where i = 1 if FX = true and i = 2 if FX = false

• ∆(par Π1‖...‖Πn endpar, X) = ∆(Π1, X) ∪ ... ∪∆(Πn, X)

The semantics of the par is a set of updates done simultaneously, contrary to the imperative
language on the following subsection that is strictly sequential.

Remark 4. If X and Y coincide over Read(Π) then: ∆(Π, X) = ∆(Π, Y )

The finiteness of the set T in the third postulate allows (see [17]) to write a finite ASM program
ΠA with the same set of updates than A for every its states:
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Proposition 2.3. (Algorithmic Completeness of the ASMs)
For every sequential algorithm A there exists an ASM program ΠA of the same language such

that for every state X of A: ∆(ΠA, X) = ∆(A,X).

Proof:
Let X be a state of A.

Gurevich proved in [17] that if (f, a1, ... ak, b) ∈ ∆(A,X) then a1, ... ak, b are interpretations
t1
X
, ... tk

X
, t0

X of terms in sub(T ).
Let ΠX be the ASM program:
par fX1 ( ~tX1 ) := tX1 ‖fX2 ( ~tX2 ) := tX2 ... ‖fXmX ( ~tXmX ) := tXmXendpar
such that ∆(ΠX , X) = ∆(A,X).
Let EX be the binary relation on terms of sub(T ) such that EX(t1, t2) is true if and only if

t1
X = t2

X .
Gurevich proved in [17] that ifX and Y are states of A such that EX = EY , then ∆(ΠX , Y ) =

∆(A, Y ).
By postulate 3 sub(T ) is finite, so there exists only a finite number EX1 , ... EXc of these

relations.
Let Fi =def ∧j 6=k(tj εi,j,k tk), where εi,j,k is = if EXi(tj , tk) is true, and εi,j,k is 6= if EXi(tj , tk)

is false.
So Fi

X = true if and only if EX = EXi .
ΠA is the program:
par if F1 then ΠX1 endif
‖if F2 then ΠX2 endif
...
‖if Fc then ΠXc endif

endpar ut

Remark 5. The Fi are guards: for every state X one and only one Fi is true.
Moreover, because ∆(ΠA, X) = ∆(A,X) = τA(X) − X, ∆(ΠA, X) is consistent without

trivial updates.

Such an ASM program ΠA is said in normal form.

Definition 2.4. An Abstract State Machine M with language L is given by:

• an ASM program Π on L

• a set S(M) of L-structures closed by isomorphisms and τΠ

• a subset I(M) ⊆ S(M) closed by isomorphisms

• an application τM , which is the restriction of τΠ to S(M)

Let ASM be the set of the Abstract States Machines.

Gurevich’s Theorem 1. Algo = ASM



14 Y. Marquer /Algo. completeness of Imp. languages

Proof:
Let A be a sequential algorithm.

Let M be the ASM given by:

• the ASM program ΠA

• the set S(M) = S(A)

• the subset I(M) = I(A) ⊆ S(A) = S(M)

• the application τM is τΠA restricted to S(A)

For every X ∈ S(A):
τA(X)
= X + (τA(X)−X)
= X + ∆(A,X)
= X + ∆(ΠA, X)
= τΠA(X)
= τM (X)
So A = M (see p.5)
On the other way, by definition an ASM M satisfies the two first postulates, and its explo-

ration witness is Read(Π) ∪ Upd(Π).16

So M is a sequential algorithm. ut

So Gurevich proved that his axiomatic presentation for the sequential algorithms defines the
same objects than his operational presentation of the Abstract State Machines.

Remark 6. According to this theorem, every ASM is a sequential algorithm and every sequen-
tial algorithm can be simulated by an ASM in normal form. So, for every ASM there exists an
equivalent ASM in normal form.

Imperative programming (While)

I define a variant of the Neil Jones’ While (see [20]) language, because this language is minimal:
the programs are only sequentialized updates, if or while commands. So, if While is algorith-
mically complete then every imperative language containing these control structures (including
usual programming languages like C, Java or Python) will be algorithmically complete too.

The difference with the Neil Jones’ While is that the data structures are not fixed. Like
for the ASMs the equality and the booleans are needed, but the other data structures will be
seen as oracular: if they can be implemented in a sequential algorithm they will be implemented
using the same language, universe and interpretation in this programming language. So, the
fair simulation between ASM and While will be proved for the control structures, up to data
structures.
16And not only Read(Π) because the update of a command could be trivial.
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Definition 2.5. (Syntax of the While programs)
(commands) c =defft1...tk := t0

| if F {s1} else {s2}
| while F {c; s}

(sequences) s =def ε | c; s
(programs) P =def{s}

where:

• f is a dynamic k-ary function symbol and t0, t1, ... tk are closed terms

• F is a formula

Notation 3. The symbol ε denotes the empty sequence. For simplicity, the empty program
will be written {} instead of {ε}.

As for the ASM programs, if the else part of an if is empty I will write only if F {s1}. Let
skip be the command if true {} (which changes nothing but costs one step).

The sequence c; s of commands can be extended by induction to sequence of sequences s1; s2
by ε; s2 = s2 and (c; s1); s2 = c; (s1; s2).

Like for the example 1.1 p.8 the operational semantics of this While programming language
will be formalized by a state transition system, where a state of the system is a pair P ?X of a
While program and a structure, and a transition is determined only by the head command and
the current structure:

Definition 2.6. Operational semantics of the While programs:
{ft1...tk := t0; s} ? X � {s} ? X + (f, t1X , ... tkX , t0X)

{if F {s1} else {s2}; s3} ? X � {s1; s3} ? X if FX = true

{if F {s1} else {s2}; s3} ? X � {s2; s3} ? X if FX = false

{while F {s1}; s2} ? X � {s1; while F {s1}; s2} ? X if FX = true

{while F {s1}; s2} ? X � {s2} ? X if FX = false

The successors are unique, so this transition system is deterministic. A succession of
transition steps �n is defined by induction on i :

• P1 ? X1 �0 P2 ? X2 if P1 = P2 and X1 = X2

• P1?X1 �i+1 P2?X2 if there exists P3?X3 such that P1?X1 � P3?X3 and P3?X3 �i P2?X2

Remark 7. �0 is = and �1 is �.
By induction on i if P1 ? X1 �i P2 ? X2 and P2 ? X2 �j P3 ? X3 then P1 ? X1 �i+j P3 ? X3,

so in a sense �i is a transitive relation.

Only the states {} ? X have no successor: they are the terminating states. I could have
introduced a rule {}?X � {}?X and defined the termination like Gurevich did for Algo: P ?X
is terminal if P ? X � P ? X.
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But if FX = true then {while F {}; s} ? X � {while F {}; s} ? X
So it should be considered as a terminal state too. Because this problem will occur in the

following simulations, I forbade in definition 2.5 the commands while F {}. So in the following
if P1 ? X1 � P2 ? X2 then P1 6= P2.

Notation 4. P terminates on X, denoted by P ↓ X, if there exists i and X ′ such that
P ? X �i {} ? X ′. Because the state transition system is deterministic i and X ′ are unique, so
X ′ will be denoted P (X) and i will be denoted time(P,X).

So if P ↓ X then P ? X �time(P,X) {} ? P (X).
Notice that time(P,X) = 0 iff P = {}.
A program is said terminal if it terminates on all its structures.

Example 2.7. A program for the minimum of two integers m and n in an execution time of
O(min(m,n)):

Pmin = {x := 0; while ¬(x = m ∨ x = n) {x := x+ 1; }; }
where m and n are the inputs and x is the output.
The execution of this program for m = 2 and n = 3 on a structure X is:

{x := 0; while ¬(x = 2 ∨ x = 3) {x := x+ 1; }; } ?X

� {while ¬(x = 2 ∨ x = 3) {x := x+ 1; }; } ?X + (x, 0)
� {x := x+ 1; while ¬(x = 2 ∨ x = 3) {x := x+ 1; }; } ?X + (x, 0)
� {while ¬(x = 2 ∨ x = 3) {x := x+ 1; }; } ?X + (x, 1)
� {x := x+ 1; while ¬(x = 2 ∨ x = 3) {x := x+ 1; }; } ?X + (x, 1)
� {while ¬(x = 2 ∨ x = 3) {x := x+ 1; }; } ?X + (x, 2)
� {} ?X + (x, 2)

time(Pmin, X) = 2 + 2×min(mX , nX) = O(min(mX , nX))

Notation 5. Let sP be the sequence such that P = {sP }. The composition P1P2 of the While
programs P1 and P2 is defined by P1P2 = {sP1 ; sP2}.

while F P1 P2 can be read as while F {sP1}; sP2 or while F {sP1 ; sP2}, so to avoid the
ambiguity braces will be added when necessary.

It can be convenient to consider a command c as a program, so let {c; } be the program c.
So cP is a notation for the program {c; sP }.

The rules have the form cP ? X � P ′P ? X ′ where P is a contextual program. Notice that
if there exists P1 such that cP1 ? X � P ′P1 ? X

′ then for every P2: cP2 ? X � P ′P2 ? X
′. The

substitution of P1 by P2 is called a context switch17.
Context switches are very useful, but they cannot be extended to �n in any case. For

example:

Example 2.8. Let:
17The following lemmas must be modified if a rule without context switch is added, for example: {exit; s} ?X �
{} ? X, but it will not be the case in this paper.
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P1 = {i := 0; i := i+ 1; }
P2 = {i := i+ 1; while true {i := i+ 1; }; }
P3 = {i := 0; while true {i := i+ 1; }; }

• In this case:
P1P2 ? X = {i := 0; i := i+ 1; i := i+ 1; while true {i := i+ 1; }; } ?X

� {i := i+ 1; i := i+ 1; while true {i := i+ 1; }; } ?X + (x, 0)
� {i := i+ 1; while true {i := i+ 1; }; } ?X + (x, 1)
= P2 ?X + (x, 1)

• The transitive context switch works:
P1P3 ? X = {i := 0; i := i+ 1; i := 0; while true {i := i+ 1; }; } ?X

� {i := i+ 1; i := 0; while true {i := i+ 1; }; } ?X + (x, 0)
� {i := 0; while true {i := i+ 1; }; } ?X + (x, 1)
= P3 ?X + (x, 1)

• But in that case:
P1P2 ? X = {i := 0; i := i+ 1; i := i+ 1; while true {i := i+ 1; }; } ?X

� {i := i+ 1; i := i+ 1; while true {i := i+ 1; }; } ?X + (x, 0)
� {i := i+ 1; while true {i := i+ 1; }; } ?X + (x, 1)
� {while true {i := i+ 1; }; } ?X + (x, 2)
� {i := i+ 1; while true {i := i+ 1; }; } ?X + (x, 2)
= P2 ?X + (x, 2)

• The transitive context switch does not work:
P1P3 ? X = {i := 0; i := i+ 1; i := 0; while true {i := i+ 1; }; } ?X

� {i := i+ 1; i := 0; while true {i := i+ 1; }; } ?X + (x, 0)
� {i := 0; while true {i := i+ 1; }; } ?X + (x, 1)
� {while true {i := i+ 1; }; } ?X + (x, 0)
� {i := i+ 1; while true {i := i+ 1; }; } ?X + (x, 0)
= P2 ?X + (x, 0)
6= P3 ?X + (x, 2)

It works in the first case and not in the second case because the execution must not “enter”
in P2, so i must be bounded by time(P1, X):

Lemma 2.9. (Transitive Context Switch)
Let P1 ↓ X and i ≤ time(P1, X).
If there exists P ′, X ′ and P2 such that P1P2 ? X �i P ′P2 ? X

′

then for every P3: P1P3 ? X �i P ′P3 ? X
′
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Proof:
The proof p.33 is made by induction on time(P1, X). ut

But in the following we will only use context switches for n = time(P1, X):

Corollary 2.10. (Intermediate States)
If P1 ↓ X then P1P2 ? X �time(P1,X) P2 ? P1(X)

Proof:
P1 ↓ X

So P1 ? X �time(P1,X) {} ? P1(X)
By lemma 2.9 on the context {}:
P1P2 ? X �time(P1,X) P2 ? P1(X) ut

This corollary is useful to prove that composition of programs works as intended:

Proposition 2.11. (Composition of Programs)
P1P2 ↓ X if and only if P1 ↓ X and P2 ↓ P1(X), such that:

• P1P2(X) = P2(P1(X))

• time(P1P2, X) = time(P1, X) + time(P2, P1(X))

Proof:
Both sides of the equivalence are proven p.35 using:

• lemma A.2: If P1P2 ↓ X then P1 ↓ X

• corollary 2.10: If P1 ↓ X then P1P2 ? X �time(P1,X) P2 ? P1(X)

• and the transitivity of the transition
ut

In particular, we can now simply prove that every imperative program without loop termi-
nates for every initial state:

Corollary 2.12. (Termination of Programs without while)
If P has no while command then P is terminal.

Proof:
The proof p.35 is made by induction on P . ut

The transition system is deterministic, which means that if i ≤ time(P,X)18 then there
exists a unique P ′ and X ′ such that: P ? X �i P ′ ? X ′.

Let τ iX(P ) be that P ′ and τ iP (X) be that X ′, so P ? X �i τ iX(P ) ? τ iP (X).
If i > time(P,X) I assume that τ iX(P ) = {} and τ iP (X) = P (X), like in the Gurevich’s

framework.
18If P does not terminate on X, we could assume that time(P,X) =∞.
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Remark 8. τ iP is not a transition function in the sense of the first section, because τ iP (X) 6=
τP ◦ ... ◦ τP (X).

Indeed, if P0 ?X0 � P1 ?X1 � ... � Pi−1 ?Xi−1 � Pi ?Xi then τ iP0
(X0) = Xi = τPi−1(Xi−1) =

... = τPi−1 ◦ ... ◦ τP1 ◦ τP0(X0) 6= τP0 ◦ ... ◦ τP0(X0).

The succession of updates made by P on X is τ1
P (X) − τ0

P (X), τ2
P (X) − τ1

P (X), ... In our
transition system a structure is updated only with an update command and only one update
per update command so τ i+1

P (X)− τ iP (X) is empty or is a singleton.

Definition 2.13. The set of the updates made by P on X is:
∆(P,X) =def

⋃
i∈N τ

i+1
P (X)− τ iP (X)

Remark 9. If P ↓ X then ∆(P,X) is finite (see lemma A.3 p.36).

P is said without overwrite on X if ∆(P,X) is consistent.
Indeed, for imperative programs there is an overwrite if we set a variable with one value and

during the execution we change this value. In our framework this means that there exists in
∆(P,X) two updates (f,~a, b) and (f,~a, b′) with b 6= b′, which means that ∆(P,X) is inconsistent.

Proposition 2.14. (Updates of a Non-Overwriting Program)
If P ↓ X without overwrite then ∆(P,X) = P (X)−X.

Proof:
The proof p.37 is made by induction on time(P,X):

∆(P,X) = (τ1
P (X) − X) ∪ ∆(τ1

X(P ), X) = (τ1
P (X) − X) ∪ (P (X) − τ1

P (X)) by induction
hypothesis.

If τ1
P (X)−X = ∅ then ∆(P,X) = P (X)− τ1

P (X) = P (X)−X.
Else τ1

P (X)−X = {u} and ∆(P,X) = {u} ∪ (P (X)− (X + u))
Because ∆(P,X) is consistent u ∈ P (X)−X, so ∆(P,X) = P (X)−X by lemma A.4. ut

3. Algorithmic Completeness

ASM simulates While

The intuitive idea for translating While programs onto ASM programs is to translate separately
every command and add a variable to keep the track of the current command19.

Example 3.1. The program of the example 2.7 p.16:
0 : x := 0
1 : while ¬(x = m ∨ x = n)
2 : x := x+ 1
could be translated onto:
par if line = 0 then par x := 0 ‖ line := 1 endpar endif

19Programs of this form are called control state ASMs (see [9]).
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‖if line = 1 then
if ¬(x = m ∨ x = n) then line := 2 else line := 3 endif

endif
‖if line = 2 then par x := x+ 1 ‖ line := 1 endpar endif

endpar

Remark 10. The number of a line is the length of the program before the current command
so numbers of lines are all between 0 and length(P ), and line = length(P ) is the end of the
program. So, instead of one integer only a finite number of booleans b0, b1, ... blength(P ) can be
used20.

This approach has been suggested in [16], and is fitted for a line-based programming language
(for example with goto instructions) but not the structured language While. Indeed, the lines
can distinguish two commands which are the same for the operational semantics of While:

Example 3.2. (Marked While)
{while true {x := x+ 1; while true {x := x+ 1; }; }; }
� {x := x+ 1; while true {x := x+ 1; };

while true {x := x+ 1; while true {x := x+ 1; }; }; }
� {while true {x := x+ 1; };

while true {x := x+ 1; while true {x := x+ 1; }; }; }
� {x := x+ 1; while true {x := x+ 1; };

while true {x := x+ 1; while true {x := x+ 1; }; }; }
The second and fourth programs are the same in the operational semantics of While, which

means that there is no difference between starting from one or the other. The same problem
occurs for the if commands :

{if true then {y := 0; x := x+ 1; } else {y := 1; x := x+ 1; }; }
� {y := 0; x := x+ 1; }
� {x := x+ 1; }

{if false then {y := 0; x := x+ 1; } else {y := 1; x := x+ 1; }; }
� {y := 1; x := x+ 1; }
� {x := x+ 1; }

A translation based on the lines could be defined, but commands must be marked with
their depth (for nested while commands) and their path (for nested if commands) to be
distinguished, and still have the same operational semantics. But we do not follow this unnatural
and unnecessary approach.

We will not use booleans b0, b1, ... blength(P ) indexed by lines of the program, but instead
booleans indexed by possible states of the program during the execution. The possible executions
of a program will be represented by a graph where the edges are the possible transitions, and
the vertices are the possible programs:
20Remember that booleans must be in the data structure, but integers may not.
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Example 3.3. (The Graph of Execution of Pmin)

x := 0
while ¬(x = m ∨ x = n)
x := x+ 1

while ¬(x = m ∨ x = n)
x := x+ 1

x := x+ 1
while ¬(x = m ∨ x = n)
x := x+ 1

{}

In the following only the vertices of the graph will be needed, so the graph of execution of
Pmin will be denoted by:

G(Pmin) = { {x := 0; while ¬(x = m ∨ x = n) {x := x+ 1; }; } ,
{while ¬(x = m ∨ x = n) {x := x+ 1; }; } ,
{x := x+ 1; while ¬(x = m ∨ x = n) {x := x+ 1; }; } ,
{}

}

Notation 6. To define a graph of execution I need to introduce the notation G(P1)P2. Let G
be a set of While programs and P be a While program.

GP =def {PGP ; PG ∈ G}

Remark 11. card(GP ) = card(G)
G1P ∪ G2P = (G1 ∪ G2)P
G1 ⊆ G2 ⇒ G1P ⊆ G2P

Let P be a While program. So G(P ) will be the set of all the possible τ iX(P ), not depending
on an initial state X:

Definition 3.4. (Graph of Execution)

• G({}) = {{}}

• G(uP ) = {uP} ∪ G(P )

• G(if F then {P1} else {P2} P )
= {if F then {P1} else {P2} P} ∪ G(P1)P ∪ G(P2)P ∪ G(P )

• G(while F {P1} P ) = G(P1) while F {P1} P ∪ G(P )

Remark 12. By induction on P : {}, P ∈ G(P )

Lemma 3.5. (Finiteness of Graph of Execution)
card(G(P )) ≤ length(P ) + 1
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Proof:
The proof p.40 is made by induction on P , and the length of P is defined in the usual way. ut

So only a finite number of guards depending only of P are necessary. Notice that for
some programs (like Pmin in the example 3.3 p.21) not in the case of the example 3.2 p.20,
card(G(P )) = length(P ) + 1 can be reached.

Proposition 3.6. (Operational Closure of Graph of Execution)
If uP ′ ∈ G(P ) then P ′ ∈ G(P )

If if F then {P1} else {P2} P ′ ∈ G(P ) then P1P
′, P2P

′ ∈ G(P )
If while F {P1} P ′ ∈ G(P ) then P1 while F {P1} P ′, P ′ ∈ G(P )

Proof:
The proof p.43 is made by cases, using:

• the composition of graphs (lemma A.5): G(P1P2) = G(P1)P2 ∪ G(P2)

• the subgraphs (lemma A.6): if Q ∈ G(P ) then G(Q) ⊆ G(P )
ut

Notation 7. The fresh boolean variables will be denoted bPG where PG ∈ G(P ).
Only one bPG will be true for each step of an execution, so in the following we will write

X[bPi ] if bPi is true and the other bPj are false, where X denotes a LP -structure (in particular
X[bPi ]|LP = X).

The proposition 3.6 ensures that the following translation is well defined:

Definition 3.7. (Translation of While programs onto ASM)
ΠP =def par ‖PG∈G(P ) if bPG then P trG endpar
where:

• {}tr = skip

• (uP ′)tr = par buP ′ := false ‖ u ‖ bP ′ := true endpar

• (if F then {P1} else {P2} P ′)tr

= par bif F then {P1} else {P2} P ′ := false

‖ if F then bP1P ′ := true else bP2P ′ := true endif endpar

• (while F {P1} P ′)tr

= par bwhile F {P1} P ′ := false

‖ if F then bP1 while F {P1} P ′ := true else bP ′ := true endif endpar

Proposition 3.8. (Step by Step Simulation)
For every i < time(P,X): τΠP (τ iP (X)[bτ iX(P )]) = τ i+1

P (X)[bτ i+1
X (P )]
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Proof:
The proof p.44 is made by case on τ iXP using the fact that the bτ iX(P ) are fresh, and that for
every PG ∈ G(P ): ∆(ΠP , X[bPG ]) = ∆(P trG , X[bPG ]). ut

Theorem 3.9. ASM simulates While

Proof:
The proof is made p.46.

1. LΠP = LP ∪ {bPG ; PG ∈ G(P )}
where card({bPG ; PG ∈ G(P )}) ≤ length(P ) + 1 by lemma 3.5.

2. Using proposition 3.8 I prove by induction on i ≤ time(P,X) that:
τ iΠP (X[bP ]) = τ iP (X)[bτ iX(P )]

So τ iΠP (X[bP ])|LP = τ iP (X)
And the temporal dilation is d = 1.

3. If i = time(P,X) then τ iX(P ) = {}
So ∆(ΠP , τ

i
P (X)[bτ iX(P )]) = ∅, and τ i+1

ΠP (X[bP ]) = τ iΠP (X[bP ])

So time(ΠP , X) ≤ time(P,X) (1)
But remember p.16: if P1 ? X1 � P2 ? X2 then P1 6= P2

So for every i < time(P,X) bτ iX(P ) is updated, so τ i+1
ΠP (X[bP ]) 6= τ iΠP (X[bP ])

So time(ΠP , X) ≥ time(P,X) (2)
By (1) and (2): time(ΠP , X) = time(P,X), and e = 0.

ut

While simulates ASM

Let Π be an ASM program. The aim of this section is to find a While program simulating the
same executions than Π. Remember than Π is made of three kind of commands: updates, if
and par. Firstly we define a syntactical translation between ASM and While:

Definition 3.10. (Syntactical Translation of the ASM programs)
(ft1...tk := t0)tr is{ft1...tk := t0; }

(if F then Π1 else Π2 endif)tr is{if F then Πtr
1 else Πtr

2 ; }
(par Π1‖...‖Πn endpar)tr isΠtr

1 ... Πtr
n (composition)

Remark 13. The translation of the skip = par endpar of the ASM programs is the empty
program {} and not the skip = if true then {} of the While programs.

Updates and if commands are the same in these two models of computation, but the simul-
taneous commands of ASM must be sequentialized in While, so this translation does not respect
the semantics of the ASM programs:
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Example 3.11. Let Π be the program par x := y‖y := x endpar and X be a structure such
that xX = 0 and yX = 1.

∆(Π, X) = {(x, 1), (y, 0)}, so: τΠ(X) = X + {(x, 1), (y, 0)}
But the translation of Π is {x := y; y := x; }, and:
{x := y; y := x; }?X + {(x, 0), (y, 1)}
� {y := x; }?X + {(x, 1), (y, 1)}
� {}?X + {(x, 1), (y, 1)}

In this example the semantics of Π is to swap the value of x and y, but the semantics of Πtr

is to erase the value of x by the value of y and leave y unchanged.
To capture the simultaneous behavior of the ASM program, we need to save the value of the

variables read in the While program. For example, if v = x and w = y in X then:
{x := w; y := v; }?X + {(x, 0), (y, 1)}
� {y := v; }?X + {(x, 1), (y, 1)}
� {}?X + {(x, 1), (y, 0)}
which is the correct behavior.

Definition 3.12. (Substitution of a Term by a Variable)
{}[v/t] is {}

(cP )[v/t] is c[v/t]P [v/t]
where :

(ft1...tk := t0)[v/t] is ft1[v/t]...tk[v/t] := t0[v/t]
(if F P1 else P2)[v/t] is if F [v/t] P1[v/t] else P2[v/t]

(while F P )[v/t] is while F [v/t] P [v/t]
where :

t1[v/t2] is v if t1 = t2

t1 if t1 6= t2

Remark 14. If t1 and t2 are distinct terms, P is a program and v1 and v2 are fresh distinct
variables then P [v1/t1][v2/t2] = P [v2/t2][v1/t1].

In particular for k distinct terms t1, t2, ... tk and k fresh distinct variables v1, v2, ... vk the
notation P [~v/~t] is not ambiguous.

Remind that Read(Π) is defined p.12. Let r = card(Read(Π)) and t1, ... tr be the (distinct)
terms read by Π. They will be substituted by the fresh variables v1, ... vr (each distinct from
the others).

According to the Gurevich’s Theorem p.13 for every ASM there exists an equivalent (same
states and same transition function) ASM in normal form, so I assume that Π is in normal form,
and:

Πtr[~v/~t] = {
if vF1 then {
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f1
1 ( ~v1

1) := v1
1;

f1
2 ( ~v1

2) := v1
2;

...
f1
m1( ~v1

m1) := v1
m1 ;

};
if vF2 then {
f2

1 ( ~v2
1) := v2

1;
f2

2 ( ~v2
2) := v2

2;
...
f2
m2( ~v2

m2) := v2
m2 ;

};
...
if vFc then {
f c1(~vc1) := vc1;
f c2(~vc2) := vc2;
...
f cmc( ~vcmc) := vcmc ;

};
}

We want to simulate one step of Π with a While program PΠ.
First, the temporary variables v1, ... vr must be initialized with the values of t1, ... tr.
Second, according to definition 1.4 p.11 the temporal dilation must be constant, depending

only of Π and not of the current state.
The conditionals are guards: one and only one Fi is true during one step, but the execution

of one block requires mi steps of calculus.
So let m = max{mi ; 1 ≤ i ≤ c}. We add m−mj skip commands at the end of each block

Fj , so the execution of a block will require exactly m steps of computation.

PΠ =def {
v1 := t1;
v2 := t2;
...
vr := tr;
if vF1 then {
f1

1 ( ~v1
1) := v1

1;
f1

2 ( ~v1
2) := v1

2;
...
f1
m1( ~v1

m1) := v1
m1 ;

skip;
... (m−m1 times)
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skip;
};
if vF2 then {
f2

1 ( ~v2
1) := v2

1;
f2

2 ( ~v2
2) := v2

2;
...
f2
m2( ~v2

m2) := v2
m2 ;

skip;
... (m−m2 times)
skip;

};
...
if vFc then {
f c1(~vc1) := vc1;
f c2(~vc2) := vc2;
...
f cmc( ~vcmc) := vcmc ;
skip;
... (m−mc times)
skip;

};
}

Let X be a state of the ASM of Π, enriched with the variables ~v. As expected, PΠ simulates
one step of Π in a constant time:

Proposition 3.13. (Semantical Translation of the ASM programs)
There exists tΠ depending only of Π such that for every state X of PΠ:

• (PΠ(X)−X)|LΠ = ∆(Π, X|LΠ)

• time(PΠ, X) = tΠ

Proof:
The proof is p.47:

The initialization requires r steps.
For every fresh variable vk and for every following state Y : vkY = tk

X

In particular for every conditional Fj : vFjY = Fj
X

The Fj are guards: one and only one is true in X. Let Fi be this formula.
One step is required to enter on the block of vFi , the other conditionals are erased in c − 1

steps.
The updates of the block are ∆(Π, X|LΠ) and require mi steps, and the skip commands

require m−mi steps.
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∆(PΠ, X) = {(~v,~tX)} ∪∆(Π, X|LΠ)
By proposition 2.14: ∆(PΠ, X) = PΠ(X)−X
So (PΠ(X)−X)|LΠ = ∆(Π, X|LΠ)
Moreover time(PΠ, X) = r + c+m, which depends only of Π. ut

Corollary 3.14. P iΠ(X)|LΠ = τ iΠ(X|LΠ)

Proof:
The proof p.49 is made by induction on i. ut

Remark 15. Because of the initial updates, for every i and k: vkP
i+1
Π (X) = tk

P iΠ(X)

With PΠ we have successfully simulated one step of Π in a constant time, not depending on
the current state. So, we need to repeat PΠ until enough steps of Π have been simulated.

This is the role of a while command but we need a formula FΠ able to detect the end of Π:

Lemma 3.15. (The µ-formula)
Let FΠ =def (v1 = t1 ∧ · · · ∧ vk = tk).
time(Π, X|LΠ) = min{i ∈ N ; FΠ

P i+1
Π (X) = true}

Proof:
Remind that: time(Π, X|LΠ) = min{i ∈ N ; τ iΠ(X|LΠ) = τ i+1

Π (X|LΠ)}
Both sides of τ iΠ(X|LΠ) = τ i+1

Π (X|LΠ) iff FΠ
P i+1

Π (X) = true are proven p.49, using the remark
p.12 on Read(Π). ut

FΠ is called a µ-formula because it is similar to the minimization operator µ of the recursive
functions (see [12]).

Theorem 3.16. While simulates ASM

Proof:
The program simulating Π in While is P = PΠ while ¬FΠ {PΠ}

1. It contains only r = card(Read(Π)) fresh variables ~v.

2. By lemma 3.15 the execution of this program on X is:
PΠ while ¬FΠ {PΠ} ? X
�tΠ while ¬FΠ {PΠ} ? PΠ(X) (corollary 2.10 p. 18)
� PΠ while ¬FΠ {PΠ} ? PΠ(X)
�tΠ while ¬FΠ {PΠ} ? P 2

Π(X)
� PΠ while ¬FΠ {PΠ} ? P 2

Π(X)
...
� PΠ while ¬FΠ {PΠ} ? P

time(Π,X|LΠ )
Π (X)
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�tΠ while ¬FΠ {PΠ} ? P
time(Π,X|LΠ )+1
Π (X)

� {} ? P time(Π,X|LΠ )+1
Π (X) (lemma 3.15)

So for every i ∈ {0, ... time(Π, X|LΠ) + 1}: τd×iP (X) = P iΠ(X)

Where d = tΠ + 1.

But P iΠ(X)|LΠ = τ iΠ(X|LΠ)

So τd×iP (X)|LΠ = τ iΠ(X|LΠ)

3. time(P,X)

= (tΠ + 1)× (time(Π, X|LΠ) + 1)

= d× time(Π, X|LΠ) + e

Where e = tΠ + 1.
ut

Conclusion

We have proven While ' ASM which ensures an algorithmic equivalence between imperative
programs and abstract state machines.

The cost in space of the simulation is O(length) in the two cases. Indeed, an ASM requires
≤ length(P )+1 fresh variables to simulate an imperative program P , and an imperative program
requires card(Read(Π)) ≤ (k + 1) × length(Π) fresh variables to simulate an ASM Π, where k
is the maximal arity of the dynamic symbols of Π.

But the cost in time is not the same. Indeed, an ASM requires a temporal dilation of d = 1
to simulate an imperative program, but an imperative program requires d = card(Read(Π)) +
c+m+ 1 steps to simulate one step of an ASM Π, where c is the number of conditionals of Π
and m is the maximal number of updates per block of Π.

So, in an Orwellian sense ASM is more equivalent than While: they are algorithmically equiv-
alent but ASM remains stronger.

This is because, contrary to ASM, in While only one update can be done per step of compu-
tation, and because the exploration of control structures is free in ASM but not in While. For
fairness, we can imagine a stronger While with tuples of updates and free exploration of the
control structures:

{(f1~t1, ... fk~tk) := (t1, ... tk); s} ? X �1 {s} ? X + {(f1,~t
X
1 , t1

X), ... (fk,~tXk , tk
X)}

{if F {s1} else {s2}; s3} ? X �0 {s1; s3} ? X if FX = true

{if F {s1} else {s2}; s3} ? X �0 {s2; s3} ? X if FX = false

{while F {s1}; s2} ? X �0 {s1; while F {s1}; s2} ? X if FX = true

{while F {s1}; s2} ? X �0 {s2} ? X if FX = false
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This stronger While can still be fairly simulated by abstract state machines21, and P =
PΠ while ¬FΠ {PΠ} can simulate an ASM program Π in normal form with a temporal dilation
d = 1 (the simulation is sttrictly step-by-step), where PΠ is:

if F1 then {(v1
1, ... v

1
m1 , f

1
1~t

1
1, ... f

1
m1
~t1m1) := (t11, ... t1m1 , t

1
1, ... t

1
m1); };

if F2 then {(v2
1, ... v

2
m2 , f

2
1~t

2
1, ... f

2
m2
~t2m2) := (t21, ... t2m2 , t

2
1, ... t

2
m2); };

...
if Fc then {(vc1, ... vcmc , f

c
1~t
c
1, ... f

c
mc
~tcmc) := (tc1, ... tcmc , t

c
1, ... t

c
mc); };

But this model for imperative programming language is not usual, and the theorem is
stronger with a minimal core for imperative behavior like Jones’ While language.

Contrary to our While which allows only a step-by-step simulation, this stronger While allows
a strictly step-by-step simulation, which is the identity22 of executions up to fresh variables.

So, the algorithmic difference between ASM and While does not really lie on control structures.
But, remember that I proved my simulation up to data structures: I assumed an identity between
data structures of ASM and While. But according to Postulate 2 these data structures are first-
order structures, which can hardly be seen as “real” data structures.

The remaining problems are:

• Are these first-order structures are equivalent to data structures used in computer pro-
gramming, or is there an example of structure of one model that can not faithfully be
represented in the other?

• In particular, is it possible to fairly characterize usual data types (like integers, words,
lists, arrays and graphs) in this logical framework, in other words to get a constructive
postulate 2?

• What is the “size” of an element, or the “cost” of an operation? How to characterize classes
of algorithms depending of their cost (in space or time) for any model of computation?

21Using one boolean per tuple of updates, and combinations of the original conditionals depending on the path
between two tuples.
22Serge Grigorieff and Pierre Valarcher worked in [15] with their Evolving Multialgebras (EMAs) on a stronger
notion: natural classes of EMAs correspond via “literal identification” to slight extension of usual models of
computation.
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A. Appendix

Composition of Programs

Lemma A.1. (Execution Chains)
For every i, j ∈ N:

if P1 ? X1 �i P2 ? X2
and P1 ? X1 �i+j P3 ? X3
then P2 ? X2 �j P3 ? X3

This proof does not use the rules of the transition system, only its determinism:

Proof:
By induction on i :

• i = 0
In that case P1 ? X1 = P2 ? X2

So if P1 ? X1 �0+j P3 ? X3

then P2 ? X2 �j P3 ? X3

• i = 1
In that case P1 ? X1 � P2 ? X2 (1)
Because P1 ? X1 �1+j P3 ? X3 there exists P ′ ? X ′ such that:
P1 ? X1 � P ′ ? X ′ (2)
P ′ ? X ′ �j P3 ? X3 (3)
Because the transition system is deterministic with (1) and (2):
P2 ? X2 = P ′ ? X ′

So with (3):
P2 ? X2 �j P3 ? X3

• i→ i+ 1
In that case P1 ? X1 �i+1 P2 ? X2 (1)
Because P1 ? X1 �i+j+1 P3 ? X3 there exists P ′ ? X ′ such that:
P1 ? X1 � P ′ ? X ′ (2)
P ′ ? X ′ �i+j P3 ? X3 (3)
Because the case j = 1 is true, with (1) and (2):
P ′ ? X ′ �i P2 ? X2

But (3), so by induction hypothesis:
P2 ? X2 �j P3 ? X3

ut
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Lemma 1. (2.9 p.17)
(Transitive Context Switch)

Let P1 ↓ X and i ≤ time(P1, X).
If there exists P ′, X ′ and P2 such that P1P2 ? X �i P ′P2 ? X

′

then for every P3: P1P3 ? X �i P ′P3 ? X
′

This proof does not use the rules of the transition system, only its determinism and context
switch:

Proof:
By induction on time(P1, X):

• time(P1, X) = 0
In that case i = 0.
If there exists P ′, X ′ and P2 such that P1P2 ? X �0 P

′P2 ? X
′

Then: P1P2 = P ′P2 and X = X ′

P1P2 = P ′P2, so (proof by induction on P1) P1 = P ′

So for every P3: P1P3 = P ′P3

But X = X ′, so P1P3 ? X �0 P
′P3 ? X

′

• time(P1, X) = t+ 1
time(P1, X) 6= 0 so P1 6= {}.
So there exists c and P ′1 such that P1 = cP ′1.
By the transition system there exist P” and X” such that:
cP ′1P2 ? X � P”P ′1P2 ? X” (1)
The case i = 0 is the same than above, so I assume that i = j + 1.
By hypothesis j + 1 ≤ time(cP ′1, X) = t+ 1, so j ≤ t.
If there exists P ′, X ′ and P2 such that:
cP ′1P2 ? X �j+1 P

′P2 ? X
′

Then, by lemma A.1 and (1): P”P ′1P2 ? X” �j P ′P2 ? X
′ (2)

By hypothesis cP ′1 ↓ X so: cP ′1 ? X �time(cP ′1,X) {} ? cP ′1(X)
But, by context switch on (1):
cP ′1 ? X � P”P ′1 ? X”
So, because time(cP ′1, X) ≥ 1, by lemma A.1 :
P”P ′1 ? X” �time(cP ′1,X)−1 {} ? cP ′1(X)
So P”P ′1 ↓ X” and time(P”P ′1, X”) = time(cP ′1, X)− 1 = t.

P”P ′1 ↓ X” and j ≤ t = time(P”P ′1, X”)
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So by induction hypothesis on (2), for every P3:
P”P ′1P3 ? X” �j P ′P3 ? X

′

But by context switch on (1), for every P3:
cP ′1P3 ? X � P”P ′1P3 ? X”
So for every P3: cP ′1P3 ? X �j+1 P

′P3 ? X
′

So P1P3 ? X �i P ′P3 ? X
′

ut

Lemma A.2. (Termination of Prefix)
If P1P2 ↓ X then P1 ↓ X

This proof does not use the rules of the transition system, only its determinism and context
switch:

Proof:
By induction on time(P1P2, X):

• time(P1P2, X) = 0
In that case P1P2 ? X = {} ? P1P2(X)
So P1P2 = {}, so P1 = {}
And P1 ↓ X

• time(P1P2, X) = t+ 1
If P1 = {} then P1 ↓ X
Else there exists c and P ′1 such that P1 = cP ′1

By the transition system there exists P ′ and X ′ such that:
cP ′1 ? X � P ′P ′1 ? X ′ (1)
So, by context switch:
cP ′1P2 ? X � P ′P ′1P2 ? X

′

But by hypothesis cP ′1P2 ↓ X and time(cP ′1P2, X) = t+ 1 so:
cP ′1P2 ? X �t+1 {} ? cP ′1P2(X)
So, by lemma A.1:
P ′P ′1P2 ? X

′ �t {} ? cP ′1P2(X)
So P ′P ′1P2 ↓ X ′ with time(P ′P ′1P2, X

′) = t.
So, by induction hypothesis on t: P ′P ′1 ↓ X ′

So by definition P ′P ′1 ? X ′ �time(P ′P ′1,X) {} ? P ′P ′1(X ′)
But (1): cP ′1 ? X � P ′P ′1 ? X ′

So cP ′1 ? X �time(P ′P ′1,X)+1 {} ? P ′P ′1(X ′)
And P1 ↓ X
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ut

Proposition 1. (2.11 p.18)
(Composition of Programs)

P1P2 ↓ X if and only if P1 ↓ X and P2 ↓ P1(X), such that:

• P1P2(X) = P2(P1(X))

• time(P1P2, X) = time(P1, X) + time(P2, P1(X))

This proof does not use the rules of the transition system, only its determinism and context
switch:

Proof:
The proof is made with the pair of statements:

• For ⇒ I assume that P1P2 ↓ X.
P1P2 ↓ X so by definition: P1P2 ? X �time(P1P2,X) {} ? P1P2(X)
P1P2 ↓ X so by lemma A.2: P1 ↓ X
So, by corollary 2.10 P1P2 ? X �time(P1,X) P2 ? P1(X)
So time(P1P2, X) ≥ time(P1, X), indeed :

– If P2 = {} then P1P2 = P1, so time(P1P2, X) = time(P1, X)
– Else P2 ? P1(X) is not a terminal state, so time(P1P2, X) > time(P1, X)

So, by lemma A.1: P2 ? P1(X) �time(P1P2,X)−time(P1,X) {} ? P1P2(X)
So P2 ↓ P1(X)
with P2(P1(X)) = P1P2(X)
and time(P2, P1(X)) = time(P1P2, X)− time(P1, X)

• For ⇐ I assume that P1 ↓ X and P2 ↓ P1(X)
P1 ↓ X so by corollary 2.10 P1P2 ? X �time(P1,X) P2 ? P1(X)
P2 ↓ P1(X) so by definition: P2 ? P1(X) �time(P2,P1(X)) {} ? P2(P1(X))
So by transitivity: P1P2 ? X �time(P1,X)+time(P2,P1(X)) {} ? P2(P1(X))
So P1P2 ↓ X
with P1P2(X) = P2(P1(X))
and time(P1P2, X) = time(P1, X) + time(P2, P1(X))

ut

Corollary 1. (2.12 p.18)
(Termination of Programs without while)

If P has no while command then P is terminal.
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Proof:
By induction on P :

• If P = {} then P is terminal.

Else there exists c and P ′ such that P = cP ′.
cP ′ has no while command so P ′ has no while command too.
So, by induction hypothesis P ′ is terminal.
Let X be a structure, there is two cases:

• c is an update u
uP ′ ? X � P ′ ? X + u

But P ′ ? X + u �time(P ′,X+u) {} ? P ′(X + u)
So, by transitivity uP ′ ? X �time(P ′,X+u)+1 {} ? P ′(X + u)
And P = uP ′ ↓ X

• c is if F {P1} else {P2}

cP ′ ? X � PiP ′ ? X where i = 1 if FX = true and else i = 2
cP ′ has no while command so Pi has no while command too.
So, by induction hypothesis Pi is terminal.
Pi ↓ X and P ′ ↓ Pi(X), so by proposition 2.11: PiP ′ ↓ X
So PiP ′ ? X �time(PiP ′,X) {} ? PiP ′(X)
By transitivity cP ′ ? X �time(PiP ′,X)+1 {} ? PiP ′(X)
So P = if F {P1} else {P2} P ′ ↓ X

ut

Updates and Overwrites

Lemma A.3. (Finiteness of the Updates)
If P ↓ X then card(∆(P,X)) ≤ time(P,X).

Proof:
If P ↓ X then ∀i ≥ time(P,X) τ iP (X) = P (X).

So ∀i ≥ time(P,X) τ i+1
P (X)− τ iP (X) = P (X)− P (X) = ∅.

So ∆(P,X) =
⋃

0≤i<time(P,X) τ
i+1
P (X)− τ iP (X).

But τ i+1
P (X)− τ iP (X) is empty or a singleton, so card(τ i+1

P (X)− τ iP (X)) ≤ 1.
So card(∆(P,X)) = card(

⋃
0≤i<time(P,X) τ

i+1
P (X)− τ iP (X))

≤
∑

0≤i<time(P,X) card(τ i+1
P (X)− τ iP (X))

≤
∑

0≤i<time(P,X) 1
= time(P,X).

ut
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Lemma A.4. For every states X and Y , and for every u ∈ Y −X :
(Y − (X + {u})) ∪ {u} = Y −X

Proof:
Let u = (ϕ, ~α, β).

Because u ∈ Y −X, ϕY (~α) = β and ϕY (~α) 6= ϕY (~α).

If f 6= ϕ then fX+{u}(~a) = f
X(~a)

Else if ~a 6= ~α then ϕX+{u}(~a) = ϕX(~a)
Else ϕX+{u}(~α) = β, so :
Y − (X + {u}) = {(f,~a, fY (~a)) ; fY (~a) 6= f

X+{u}(~a)}
= {(f,~a, fY (~a)) ; f 6= ϕ and fY (~a) 6= f

X(~a)}
t {(ϕ,~a, ϕY (~a)) ; ~a 6= ~α and ϕY (~a) 6= ϕX(~a)}
t {(ϕ, ~α, ϕY (~α)) ; ϕY (~α) 6= β}

(Y −X)\{u} = {(f,~a, fY (~a)) 6= u ; fY (~a) 6= f
X(~a)}

= {(f,~a, fY (~a)) 6= u ; f 6= ϕ and fY (~a) 6= f
X(~a)}

t {(ϕ,~a, ϕY (~a)) 6= u ; ~a 6= ~α and ϕY (~a) 6= ϕX(~a)}
t {(ϕ, ~α, ϕY (~α)) 6= u ; ϕY (~α) 6= ϕX(~α)}

f 6= ϕ implies that (f,~a, fY (~a)) 6= u, so :
{(f,~a, fY (~a)) ; f 6= ϕ and fY (~a) 6= f

X(~a)}
= {(f,~a, fY (~a)) 6= u ; f 6= ϕ and fY (~a) 6= f

X(~a)}
~a 6= ~α implies that (f,~a, fY (~a)) 6= u, so :
{(ϕ,~a, ϕY (~a)) ; ~a 6= ~α and ϕY (~a) 6= ϕX(~a)}

= {(ϕ,~a, ϕY (~a)) 6= u ; ~a 6= ~α and ϕY (~a) 6= ϕX(~a)}
Because ϕY (~α) = β: {(ϕ, ~α, ϕY (~α)) ; ϕY (~α) 6= β} = ∅
Because (ϕ, ~α, ϕY (~α)) = u: {(ϕ, ~α, ϕY (~α)) 6= u ; ϕY (~α) 6= ϕX(~α)} = ∅
So Y − (X + {u}) = (Y −X)\{u}.
But u ∈ Y −X, so (Y − (X + {u})) ∪ {u} = ((Y −X)\{u}) ∪ {u} = Y −X. ut

Proposition 2. (2.14 p.19)
(Updates of a Non-Overwriting Program)

If P ↓ X without overwrite then ∆(P,X) = P (X)−X.

Proof:
By induction on time(P,X):

• time(P,X) = 0
In that case P ? X = {} ? P (X)
So ∆(P,X)
=

⋃
0≤i<time(P,X) τ

i+1
P (X)− τ iP (X)

= ∅
= P (X)−X
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• time(P,X) = t+ 1
time(P,X) 6= 0 so there exists c and P̃ such that P = cP̃

By the transition system there exists P ′ and X ′ such that:
cP̃ ? X � P ′P̃ ? X ′

But by hypothesis :
cP̃ ? X �t+1 {} ? cP̃ (X)
So, by lemma A.1:
P ′P̃ ? X ′ �t {} ? cP̃ (X)
So P ′P̃ ↓ X ′ with time(P ′P̃ ,X ′) = t and P ′P̃ (X ′) = cP̃ (X)

Let 0 ≤ i ≤ time(P ′P̃ ,X ′).
I prove that τ i+1

cP̃
(X) = τ i

P ′P̃
(X ′):

By definition P ′P̃ ? X ′ �i τ iX′(P ′P̃ ) ? τ i
P ′P̃

(X ′)

But cP̃ ? X � P ′P̃ ? X ′

So by transitivity cP̃ ? X �i+1 τ
i
X′(P ′P̃ ) ? τ i

P ′P̃
(X ′)

But by definition cP̃ ? X �i+1 τ
i+1
X (cP̃ ) ? τ i+1

cP̃
(X)

So, because the transition system is deterministic:
τ i+1
cP̃

(X) = τ i
P ′P̃

(X ′)

∆(cP̃ ,X)
=

⋃
0≤i<time(cP̃ ,X) τ

i+1
cP̃

(X)− τ i
cP̃

(X)

= (τ1
cP̃

(X)− τ0
cP̃

(X)) ∪
⋃

0≤i<time(cP̃ ,X)−1 τ
i+2
cP̃

(X)− τ i+1
cP̃

(X)

= (X ′ −X) ∪
⋃

0≤i<time(P ′P̃ ,X′) τ
i+1
P ′P̃

(X ′)− τ i
P ′P̃

(X ′)

= (X ′ −X) ∪∆(P ′P̃ ,X ′)
Because ∆(cP̃ ,X) is consistent, ∆(P ′P̃ ,X ′) is consistent too.
So P ′P̃ is without overwrite on X ′.

P ′P̃ ↓ X ′ without overwrite, and time(P ′P̃ ,X ′) = t

So by induction hypothesis on t: ∆(P ′P̃ ,X ′) = P ′P̃ (X ′)−X ′

But P ′P̃ (X ′) = cP̃ (X)
So ∆(cP̃ ,X)
= (X ′ −X) ∪∆(P ′P̃ ,X ′)
= (X ′ −X) ∪ (P ′P̃ (X ′)−X ′)
= (X ′ −X) ∪ (cP̃ (X)−X ′)

Because X ′ = τ1
cP̃

(X), there is two cases:
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– X ′ −X is empty.
In that case X ′ = X

So ∆(cP̃ ,X)
= ∅ ∪ (cP̃ (X)−X ′)
= cP̃ (X)−X

– X ′ −X is a singleton {u}.
In that case X ′ = X + {u}.
So ∆(cP̃ ,X)
= (X ′ −X) ∪ (cP̃ (X)−X ′)
= {u} ∪ (cP̃ (X)− (X + {u}))

I prove that u ∈ cP̃ (X)−X:
Let u = (f,~a, b).
{u} = X ′ −X = τ1

cP̃
(X)− τ0

cP̃
(X) so u ∈ ∆(cP̃ ,X).

∆(cP̃ ,X) is consistent.
So there is in ∆(cP̃ ,X) no other update with that location.

So for every 1 ≤ i ≤ time(cP̃ ,X): f τ
i
cP̃

(X)(~a) = b.

In particular τ time(cP̃ ,X)
cP̃

(X) = cP̃ (X), so f cP̃ (X)(~a) = b.

But fX(~a) 6= b because X ′ −X = {u}.
So u = (f,~a, b) ∈ cP̃ (X)−X.

So by lemma A.4 ∆(cP̃ ,X) = cP̃ (X)−X

In any case : ∆(P,X) = P (X)−X
ut

Graph of Execution

The length of a While program is defined by induction:

• length({}) = 0

• length({c; s}) = length(c) + length({s})

where :

• length(ft1...tk := t0) = 1

• length(if F {s1} else {s2}) = 1 + length({s1}) + length({s1})

• length(while F {s}) = 1 + length({s})
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Lemma 2. (3.5 p.21)
(Finiteness of Graph of Execution)

card(G(P )) ≤ length(P ) + 1

Proof:
By induction on P :

• P = {}
G({}) = {{}}
So card(G(P )) = 1 = length(P ) + 1

• P = uP ′

G(uP ′) = {uP ′} ∪ G(P ′)
So card(G(P ))
≤ 1 + card(G(P ′))
≤ 1 + length(P ′) + 1 (by induction hypothesis)
= length(P ) + 1

• P = if F then {P1} else {P2} P ′

G(if F then {P1} else {P2} P ′)
= {if F then {P1} else {P2} P ′} ∪ G(P1)P ′ ∪ G(P2)P ′ ∪ G(P ′)
= {if F then {P1} else {P2} P ′} ∪ G(P1)P ′\{P ′} ∪ G(P2)P ′\{P ′} ∪ G(P ′)
Because P ′ ∈ G(P ′), and {} ∈ G(P1),G(P2) implies P ′ ∈ G(P1)P ′,G(P2)P ′ So card(G(P ))
≤ 1 + (card(G(P1))− 1) + (card(G(P2))− 1) + card(G(P ′))
≤ 1 + length(P1) + length(P2) + length(P ′) + 1 (by induction hypothesis)
= length(P ) + 1

• P = while F {P1} P ′

G(while {P1} P ′) = G(P1) while {P1} P ′ ∪ G(P ′)
So card(G(P ))
≤ card(G(P1)) + card(G(P ′))
≤ 1 + length(P1) + length(P ′) + 1 (by induction hypothesis)
= length(P ) + 1

ut

Lemma A.5. (Composition of Graphs of Execution)
G(P1P2) = G(P1)P2 ∪ G(P2)

Proof:
By induction on P1:
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• P1 = {}
G(P1P2)
= G(P2)
= {P2} ∪ G(P2)
= G(P1)P2 ∪ G(P2)

• P1 = uP ′1

G(P1P2)
= G(uP ′1P2)
= {uP ′1P2} ∪ G(P ′1P2)
= {uP ′1}P2 ∪ G(P ′1)P2 ∪ G(P2) (by induction hypothesis)
= ({uP ′1} ∪ G(P ′1))P2 ∪ G(P2)
= G(uP ′1)P2 ∪ G(P2)
= G(P1)P2 ∪ G(P2)

• P1 = if F then {P ′} else {P ′′} P ′1
G(P1P2)
= {P1P2} ∪ G(P ′)P ′1P2 ∪ G(P ′′)P ′1P2 ∪ G(P ′1P2)
= {P1}P2 ∪ G(P ′)P ′1P2 ∪ G(P ′′)P ′1P2 ∪ G(P ′1)P2 ∪ G(P2)
(by induction hypothesis)
= ({P1} ∪ G(P ′)P ′1 ∪ G(P ′′)P ′1 ∪ G(P ′1))P2 ∪ G(P2)
= G(P1)P2 ∪ G(P2)

• P1 = while F {P ′} P ′1
G(P1P2)
= G(while F {P ′} P ′1P2)
= G(P ′)while F {P ′} P ′1P2 ∪ G(P ′1P2)
= G(P ′)while F {P ′} P ′1P2 ∪ G(P ′1)P2 ∪ G(P2) (by induction hypothesis)
= (G(P ′)while F {P ′} P ′1 ∪ G(P ′1))P2 ∪ G(P2)
= G(while F {P ′} P ′1)P2 ∪ G(P2)
= G(P1)P2 ∪ G(P2)

ut

Lemma A.6. (Subgraph of Execution)
Q ∈ G(P )⇒ G(Q) ⊆ G(P )

Proof:
By induction on P :
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• P = {}
Q ∈ G(P ) = {{}}
So Q = {} = P and G(Q) = G(P )

• P = uP ′

Q ∈ G(P ) = {uP ′} ∪ G(P ′)
So Q = uP ′ = P or Q ∈ G(P ′)
By cases:

– If Q = P then G(Q) = G(P )
– If Q ∈ G(P ′) then by induction hypothesis G(Q) ⊆ G(P ′)

So G(Q) ⊆ G(P ′) ⊆ {uP ′} ∪ G(P ′) = G(P )

• P = if F then {P1} else {P2} P ′

Q ∈ G(P ) = {if F then {P1} else {P2} P ′} ∪ G(P1)P ′ ∪ G(P2)P ′ ∪ G(P ′)
So Q = if F then {P1} else {P2} P ′ = P

or Q ∈ G(P1)P ′ or Q ∈ G(P2)P ′ or Q ∈ G(P ′)
By cases:

– If Q = P then G(Q) = G(P )
– If Q ∈ G(P1)P ′ then there exists Q′ ∈ G(P1) such that Q = Q′P ′

By induction hypothesis G(Q′) ⊆ G(P1)
So G(Q′)P ′ ⊆ G(P1)P ′

By lemma A.5 G(Q′P ′) = G(Q′)P ′ ∪ G(P ′)
So G(Q)
= G(Q′)P ′ ∪ G(P ′)
⊆ G(P1)P ′ ∪ G(P ′)
⊆ {if F then {P1} else {P2} P ′} ∪ G(P1)P ′ ∪ G(P2)P ′ ∪ G(P ′)
= G(P )

– Likewise if Q ∈ G(P2)P ′

– If Q ∈ G(P ′) then by induction hypothesis G(Q) ⊆ G(P ′)
So G(Q)
⊆ G(P ′)
⊆ {if F then {P1} else {P2} P ′} ∪ G(P1)P ′ ∪ G(P2)P ′ ∪ G(P ′)
= G(P )

• P = while F {P1} P ′

Q ∈ G(P ) = G(P1)while {P1} P ′ ∪ G(P ′) = G(P1)P ∪ G(P ′)
So Q ∈ G(P1)P or Q ∈ G(P ′)
By cases:
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– If Q ∈ G(P1)P
then there exists Q′ ∈ G(P1) such that Q = Q′P

By induction hypothesis G(Q′) ⊆ G(P1)
So G(Q′)P ⊆ G(P1)P
By lemma A.5 G(Q′P ) = G(Q′)P ∪ G(P )
So G(Q)
= G(Q′)P ∪ G(P )
⊆ G(P1)P ∪ G(P1)P ∪ G(P ′)
= G(P1)P ∪ G(P ′)
= G(P )

– If Q ∈ G(P ′) then by induction hypothesis G(Q) ⊆ G(P ′)
So G(Q)
⊆ G(P ′)
⊆ G(P1)P ∪ G(P ′)
= G(P )

ut

Proposition 3. (3.6 p.22)
(Operational Closure of Graph of Execution)

If uP ′ ∈ G(P ) then P ′ ∈ G(P )
If if F then {P1} else {P2} P ′ ∈ G(P ) then P1P

′, P2P
′ ∈ G(P )

If while F {P1} P ′ ∈ G(P ) then P1 while F {P1} P ′, P ′ ∈ G(P )

Proof:
By cases:

• If uP ′ ∈ G(P )
Then {uP ′} ∪ G(P ′)
= G(uP ′)
⊆ G(P ) by lemma A.6
But P ′ ∈ G(P ′)
So P ′ ∈ G(P )

• If if F then {P1} else {P2} P ′ ∈ G(P )
Then {if F then {P1} else {P2} P ′} ∪ G(P1)P ′ ∪ G(P2)P ′ ∪ G(P ′)
= G(if F then {P1} else {P2} P ′)
⊆ G(P ) by lemma A.6
But P1P

′ ∈ G(P1)P ′ and P2P
′ ∈ G(P2)P ′

So P1P
′, P2P

′ ∈ G(P )
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• If while F {P1} P ′ ∈ G(P )
Then G(P1) while F {P1} P ′ ∪ G(P ′)
= G(while F {P1} P ′)
⊆ G(P ) by lemma A.6
But P1 while F {P1} P ′ ∈ G(P1) while F {P1} P ′

And P ′ ∈ G(P ′)
So P1 while F {P1} P ′, P ′ ∈ G(P )

ut

Proposition 4. (3.8 p.22)
(Step by Step Simulation)

For every i < time(P,X): τΠP (τ iP (X)[bτ iX(P )]) = τ i+1
P (X)[bτ i+1

X (P )]

Proof:
i < time(P,X) so τ iX(P ) 6= {}

By cases on τ iX(P ):

• If τ iX(P ) = uP ′

Then τ i+1
P (X) = τ iP (X) + {uτ iP (X)} and τ i+1

X (P ) = P ′

∆(ΠP , τ
i
P (X)[bτ iX(P )])

= ∆((uP ′)tr, τ iP (X)[bτ iX(P )])

= ∆(par buP ′ := false ‖ u ‖ bP ′ := true endpar, τ iP (X)[bτ iX(P )])

= {(buP ′ , false), u
τ iP (X)[b

τi
X

(P )], (bP ′ , true)}
= {(buP ′ , false), uτ

i
P (X), (bP ′ , true)} (because bτ iX(P ) is fresh)

So τΠP (τ iP (X)[bτ iX(P )])

= τ iP (X)[bτ iX(P )] + ∆(ΠP , τ
i
P (X)[bτ iX(P )])

= τ iP (X)[buP ′ ] + {(buP ′ , false), uτ
i
P (X), (bP ′ , true)}

= (τ iP (X) + {uτ iP (X)})[bP ′ ]
= τ i+1

P (X)[bτ i+1
X (P )]

• If τ iX(P ) = if F then {P1} else {P2} P ′

Then τ i+1
P (X) = τ iP (X) and τ i+1

X (P ) = PiP
′

where i = 1 if F τ
i
P (X) = true, and else i = 2

∆(ΠP , τ
i
P (X)[bτ iX(P )])

= ∆((if F then {P1} else {P2} P ′)tr, τ iP (X)[bτ iX(P )])
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= ∆(par bif F then {P1} else {P2} P ′ := false

‖ if F then bP1P ′ := true else bP2P ′ := true endif endpar, τ iP (X)[bτ iX(P )])

= {(bif F then {P1} else {P2} P ′ , false), (bPjP ′ , true)}

where j = 1 if F
τ iP (X)[b

τi
X

(P )] = true, and else i = 2

But bτ iX(P ) is fresh, so F τ
i
P (X) = F

τ iP (X)[b
τi
X

(P )], so i = j

So ∆(ΠP , τ
i
P (X)[bτ iX(P )])

= {(bif F then {P1} else {P2} P ′ , false), (bPiP ′ , true)}
So τΠP (τ iP (X)[bτ iX(P )])

= τ iP (X)[bτ iX(P )] + ∆(ΠP , τ
i
P (X)[bτ iX(P )])

= τ iP (X)[bif F then {P1} else {P2} P ′ ] + {(bif F then {P1} else {P2} P ′ , false), (bPiP ′ , true)}
= τ iP (X)[bPiP ′ ]
= τ i+1

P (X)[bτ i+1
X (P )]

• If τ iX(P ) = while F {P1} P ′

Then τ i+1
P (X) = τ iP (X) and τ i+1

X (P ) = QP ′

where Q = P1 while F {P1} if F
τ iP (X) = true, and else Q = {}

∆(ΠP , τ
i
P (X)[bτ iX(P )])

= ∆((while F {P1} P ′)tr, τ iP (X)[bτ iX(P )])

= ∆(par bwhile F {P1} P ′ := false

‖ if F then bP1 while F {P1} P ′ := true else bP ′ := true endif endpar, τ iP (X)[bτ iX(P )])

= {(bwhile F {P1} P ′ , false), (bQ′P ′ , true)}

where Q′ = P1 while F {P1} if F
τ iP (X)[b

τi
X

(P )] = true, and else Q′ = {}

But bτ iX(P ) is fresh, so F τ
i
P (X) = F

τ iP (X)[b
τi
X

(P )], so Q = Q′

So ∆(ΠP , τ
i
P (X)[bτ iX(P )])

= {(bwhile F {P1} P ′ , false), (bQP ′ , true)}
So τΠP (τ iP (X)[bτ iX(P )])

= τ iP (X)[bτ iX(P )] + ∆(ΠP , τ
i
P (X)[bτ iX(P )])

= τ iP (X)[bwhile F {P1} P ′ ] + {(bwhile F {P1} P ′ , false), (bQP ′ , true)}
= τ iP (X)[bQP ′ ]
= τ i+1

P (X)[bτ i+1
X (P )]

ut
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Theorem 2. (3.9 p.23)
ASM simulates While

Proof:
LΠP = LP ∪ {bPG ; PG ∈ G(P )}

where card({bPG ; PG ∈ G(P )}) ≤ length(P ) + 1 by lemma 3.5.

I prove that for every i ≤ time(P,X): τ iΠP (X[bP ]) = τ iP (X)[bτ iX(P )]
By induction on i:

• i = 0
τ0

ΠP (X[bP ]) = X[bP ] = τ0
P (X)[bτ0

X(P )]

• i→ i+ 1
τ i+1

ΠP (X[bP ])

= τΠP (τ iΠP (X[bP ]))

= τΠP (τ iP (X)[bτ iX(P )]) by induction hypothesis

= τ i+1
P (X)[bτ i+1

X (P )] by proposition 3.8

Because i < i+ 1 ≤ time(P,X)

So for every i ∈ N:
τ iΠP (X[bP ])|LP
= τ iP (X)[bτ iX(P )]|LP
= τ iP (X)
And the temporal dilation is d = 1.

If i = time(P,X) then τ iX(P ) = {}
So ∆(ΠP , τ

i
P (X)[bτ iX(P )])

= ∆({}tr, τ iP (X)[bτ iX(P )])
= ∆(skip, τ iP (X)[bτ iX(P )])
= ∅
So τ i+1

ΠP (X[bP ])
= τΠP (τ iΠP (X[bP ]))
= τΠP (τ iP (X)[bτ iX(P )])
= τ iP (X)[bτ iX(P )] + ∆(ΠP , τ

i
P (X)[bτ iX(P )])

= τ iP (X)[bτ iX(P )]
= τ iΠP (X[bP ])
So time(ΠP , X) ≤ time(P,X) (1)
But remember p.16: if P1 ? X1 � P2 ? X2 then P1 6= P2.
So for every i < time(P,X) bτ iX(P ) is updated, so τ i+1

ΠP (X[bP ]) 6= τ iΠP (X[bP ])
So time(ΠP , X) ≥ time(P,X) (2)
By (1) and (2) time(ΠP , X) = time(P,X), and e = 0. ut
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Translation of a Normal Form Program
Proposition 5. (3.13 p.26)
(Semantical Translation of the ASMs)

There exists tΠ depending only of Π such that for every state X of PΠ:

• (PΠ(X)−X)|LΠ = ∆(Π, X|LΠ)

• time(PΠ, X) = tΠ

Proof:

Remind that:
PΠ =def {
v1 := t1;
v2 := t2;
...
vr := tr;
if vF1 then {
f1

1 ( ~v1
1) := v1

1;
f1

2 ( ~v1
2) := v1

2;
...
f1
m1( ~v1

m1) := v1
m1 ;

skip;
... (m−m1 times)
skip;

};
if vF2 then {
f2

1 ( ~v2
1) := v2

1;
f2

2 ( ~v2
2) := v2

2;
...
f2
m2( ~v2

m2) := v2
m2 ;

skip;
... (m−m2 times)
skip;

};
...
if vFc then {
f c1(~vc1) := vc1;
f c2(~vc2) := vc2;
...
f cmc( ~vcmc) := vcmc ;
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skip;
... (m−mc times)
skip;

};
}
The ~v are not occurring in the ~t, so after the initialization the state is X ′ = X + {(~v,~tX)},

and for every k ∈ {1, ... r}: vkX
′ = tk

X .
The remaining program is Πtr[~v/~t] with skip commands, where the updated symbols are

the same that in the ASM program.
So, because the ~v are fresh they are not updated in the remaining program, and for every

following state Y : vkY = vk
X′

So for every k ∈ {1, ... r)} and for every following state Y : vkY = tk
X

The remaining program is a sequence of if commands, where the Fj are guards: for every
state Y one and only one Fj is true.

Let Fi be the formula true in X.
But for every following state Y and for every conditional Fj : vFjY = Fj

X .
So, during the following states vFi is true and the other vFj are false, which means that

during the execution the block of if vFi is executed, but the other conditional are erased.
These commands are: f i1(~vi1) := vi1; f i2(~vi2) := vi2; ... f imi(

~vimi) := vimi ; and m − mi skip
commands.

Because for every following state Y : vkY = tk
X , the set of updates induced by the block is

{(f i1, ~ti1
X
, ti1

X
), (f i2, ~ti2

X
, ti2

X
), ... (f imi ,

~timi
X
, timi

X)} = ∆(Π, X|LΠ).
So: ∆(PΠ, X) = {(~v,~tX)} ∪∆(Π, X|LΠ)
∆(Π, X|LΠ) = τΠ(X|LΠ)−X|LΠ is consistent.
The ~v are fresh distinct variables, so ∆(PΠ, X) is consistent too.
But by lemma 2.12 PΠ is terminal, so PΠ ↓ X without overwrite.
So by proposition 2.14: ∆(PΠ, X) = PΠ(X)−X, and:
(PΠ(X)−X)|LΠ

= ∆(PΠ, X)|LΠ

= ({(~v,~tX)} ∪∆(Π, X|LΠ))|LΠ

= {(~v,~tX)}|LΠ ∪∆(Π, X|LΠ)|LΠ

= ∅ ∪∆(Π, X|LΠ)
= ∆(Π, X|LΠ)
For the execution time:

• The initialization of the ~v requires r steps.

• The conditional before Fi are erased in i− 1 steps.

• One step is required to enter on the block of vFi .

• The updates of the block require mi steps.

• The skip commands require m−mi steps.
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• The conditional after Fi are erased in c− i steps.

So:
time(PΠ, X)
= r + (i− 1) + 1 +mi + (m−mi) + (c− i)
= r + c+m

which depends only of Π. ut

Corollary 2. (3.14 p.27)
P iΠ(X)|LΠ = τ iΠ(X|LΠ)

Proof:
By induction on i:

• i = 0
P 0

Π(X)|LΠ = X|LΠ = τ0
Π(X|LΠ)

• i→ i+ 1
P i+1

Π (X)|LΠ

= PΠ(P iΠ(X))|LΠ

= (P iΠ(X) + (PΠ(P iΠ(X))− P iΠ(X)))|LΠ

= P iΠ(X)|LΠ + (PΠ(P iΠ(X))− P iΠ(X))|LΠ

= P iΠ(X)|LΠ + ∆(Π, P iΠ(X)|LΠ) (proposition 3.13)
= τ iΠ(X|LΠ) + ∆(Π, τ iΠ(X|LΠ)) (induction hypothesis)
= τ i+1

Π (X|LΠ)
ut

Lemma 3. (3.15 p.27)
(The µ-formula)

Let FΠ =def (∧~v = ~t).
time(Π, X|LΠ) = mini∈N{FΠ

P i+1
Π (X) = true}

Proof:
Remind that: time(Π, X|LΠ) = mini∈N{τ iΠ(X|LΠ) = τ i+1

Π (X|LΠ)}
I prove that: τ iΠ(X|LΠ) = τ i+1

Π (X|LΠ) iff FΠ
P i+1

Π (X) = true

FΠ
P i+1

Π (X) = true

iff for every k vkP
i+1
Π (X) = tk

P i+1
Π (X) (definition of FΠ)

iff for every k tkP
i
Π(X) = tk

P i+1
Π (X) (remark p.27)

iff for every k tkP
i
Π(X)|LΠ = tk

P i+1
Π (X)|LΠ (tk ∈ Read(Π))

iff for every k tkτ
i
Π(X|LΠ ) = tk

τ i+1
Π (X|LΠ ) (corollary 3.14 p.27)
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• If τ iΠ(X|LΠ) = τ i+1
Π (X|LΠ)

Then for every k tkτ
i
Π(X|LΠ ) = tk

τ i+1
Π (X|LΠ )

So FΠ
P i+1

Π (X) = true

• If FΠ
P i+1

Π (X) = true

Then for every k tkτ
i
Π(X|LΠ ) = tk

τ i+1
Π (X|LΠ )

So τ iΠ(X|LΠ) and τ i+1
Π (X|LΠ) coincides over Read(Π).

By the remark p.12: ∆(Π, τ iΠ(X|LΠ)) = ∆(Π, τ i+1
Π (X|LΠ))

So τ i+2
Π (X|LΠ)

= τ i+1
Π (X|LΠ) + ∆(Π, τ i+1

Π (X|LΠ))
= (τ iΠ(X|LΠ) + ∆(Π, τ iΠ(X|LΠ))) + ∆(Π, τ i+1

Π (X|LΠ))
= (τ iΠ(X|LΠ) + ∆(Π, τ iΠ(X|LΠ))) + ∆(Π, τ iΠ(X|LΠ))
= τ iΠ(X|LΠ) + ∆(Π, τ iΠ(X|LΠ))
= τ i+1

Π (X|LΠ)
So τ i+2

Π (X|LΠ)− τ i+1
Π (X|LΠ) = ∅

But ∆(Π, τ i+1
Π (X|LΠ)) = τ i+2

Π (X|LΠ)− τ i+1
Π (X|LΠ)

So ∆(Π, τ i+1
Π (X|LΠ)) = ∅

But ∆(Π, τ iΠ(X|LΠ)) = ∆(Π, τ i+1
Π (X|LΠ))

So ∆(Π, τ iΠ(X|LΠ)) = ∅
And τ i+1

Π (X|LΠ) = τ iΠ(X|LΠ) + ∆(Π, τ iΠ(X|LΠ)) = τ iΠ(X|LΠ)
ut


